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Abstract. We discuss some motivations that lead to the proposal of a generalized 4-momentum,
which takes the formpα = (1/c2)(uνp

ν)uα +κ duα/dτ . This expression has been applied recently
to the problem of the Lorentz–Dirac equation and yields well behaved solutions. Here we apply it
to a free particle and discuss some possible consequences.

1. Introduction

In classical mechanics, momentum and velocity are defined to be directly proportional to each
other as given by

p = mv. (1.1)

All of classical mechanics rests upon this simple relationship. The validity of (1.1) was
considered a paradigm, until the advent of the theory of relativity, which replaces (1.1) by

pα = muα. (1.2)

This covariant generalization of (1.1) becomes the foundation of relativistic mechanics. Its
validity is again considered to be universal, at least for a free particle. However, there is
a simple but important difference between (1.1) and (1.2). Although there is no restriction
imposed on thev, there is a condition

uνu
ν = c2 (1.3)

thatuα must always satisfy.
There now arises the question of whether (1.2) and (1.3) are compatible under all

conditions? The answer depends on howpα is interpreted. One interpretation is thatpα does
not possess any independent physical meaning originally. Its physical meaning is acquired
precisely from (1.2). In this case, equation (1.2) is strictly a matter of definingpα by uα. As
such, equations (1.2) and (1.3) can always be made to agree with each other. An alternative
interpretation is thatpα possesses independent physical meaning: it is this quantity that will
respond to the external physical conditions and communicate this response to modify the state
of the motion of the particle that carries it. In this case, equation (1.2) is a kind of constitutive
relationship which is valid only under certain physical conditions, indicating that the physical
quantitypα and the spacetime geometrical quantityuα are not completely independent of each
other. If one treats (1.2) as a constitutive relationship rather than just a definition, then one may
look for a generalization of (1.2) so that the generalized relationship will manifestly warrant
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the validity of (1.3) and reduce to (1.2) in some way, just as (1.2) will reduce to (1.1) for a small
value of velocity. We expect that (1.2) should be a very good approximation for a free particle
with largem or small acceleration just as (1.1) is a very good approximation for smallv. It
is for very smallm during or shortly after collision, suffering a large acceleration, that (1.2)
may become questionable. If we look back at the classical expression (1.1) we find that it is
valid for moderate values ofm andv. Since it must be modified to account for effects at high
velocities, it probably will require modification from quantum effects as the small-mass limit
is approached. Quantum effects here means microscopic, intrinsic, uncontrollable interactions
among some dynamical variables. By treatinguα andpα as independent dynamical variables
whose constitutive relationship is to be found, one may imagine a certain intrinsic interaction
betweenuα andpα. It is expected that such a generalized momentum–velocity relationship
will approach the established (1.2) asymptotically in time or fluctuate around it, if a particle is
isolated in a force-free space.

Following this line of reasoning, we are led to propose a new relationship among
momentum, velocity and acceleration.

2. Intrinsic interaction between momentum and velocity

Flat Minkowski systems will be taken as the reference inertial ones. In such systems a spacetime
point is denoted by{xα|x0 = ct, x1 = x, x2 = y, x3 = z}. The metric is defined to be
g00 = g00 = 1, gii = gii = −1, for i = 1, 2, 3 andgαβ = gαβ = 0, for α 6= β. The element
of world distance is then given by

ds2 = (dxα)
(
dxα

) = (dx0
)2 − (dx1

)2 − (dx2
)2 − (dx3

)2
. (2.1)

Defining the proper time to be

dτ = 1

c

√
ds2 (2.2)

one has

uα = dxα

dτ
(2.3)

as the definition of 4-velocity. From this definition, 4-velocity must always satisfy

uνu
ν = c2. (2.4)

Condition (2.4) is a direct and sole consequence of the spacetime structure and is
independent of the dynamical environment, as long as it does not alter the spacetime structure.
The gravitational field shall be excluded from our consideration here. Taking the time derivative
of (2.4) one has

uν
duν

dτ
= uν duν

dτ
= 0. (2.5)

A particular solution to (2.5) is

duα

dτ
= duα

dτ
= 0. (2.6)

All inertial systems satisfy (2.6) and are characterized by it.
The general motion of a particle clearly does not satisfy (2.6). In a force-free space, the

motion of a particle can have (2.6) as a solution. In fact, equation (2.6) is conventionally
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regarded as the sufficient and necessary condition that the motion of a particle is in a force-
free space. Here, we depart from this view and consider (2.6) as only a sufficient, butnot a
necessarycondition that the motion of a particle is indeed in a force-free space. A force-free
space is defined here as that where there exists no external force agent to act on and change
the dynamical state of the particle moving in this space.

We shall characterize a dynamical state of the motion by a dynamical quantity called the
energy–momentum 4-vector, to be introduced presently, jointly with the velocity 4-vectoruα.
We assume that a physical particle possesses and carries along with it some physical quantities
that can only be changed by external forces. In their absence such physical quantities will be
constants of the motion.

We therefore postulate that every massive physical particle possesses and carries along
with its motion a timelike 4-vector called the energy–momentum 4-vector and denoted by
{pα|p0 = E/c, p1 = px, p

2 = py, p
3 = pz}. This energy–momentum 4-vector, being

timelike, satisfies the condition

pνp
ν = (mc)2 (2.7)

wherem is the rest mass. According to Newton’s law of motion, the temporal evolution ofpα

and the external force 4-vectorf α are related by

dpα

dτ
= f α. (2.8)

In the absence of an external force, equation (2.8) is reduced to

dpα

dτ
= 0. (2.9)

We regard condition (2.9) as the sufficient and necessary condition to characterize that the
motion of a particle is in a force-free space.

In order that (2.8) or (2.9) can be physically meaningful and mathematically solvable, a
constitutive relationship betweenpα anduα must be provided. Conventionally this relationship
is given by (1.2). With (1.2), conditions (2.6) and (2.9) become completely equivalent, which
specify the motion to be in a force-free space. We shall now depart from the established
relationship (1.2).

We requireuα to always satisfy (2.5), even in the force-free case. There are many
possibilities for this to occur. Obviously, equation (1.2) satisfies (2.5). However, equation (1.2)
is so rigid that momentum and velocity do not have independent meaning. The simplest
possibility beyond (1.2) that allows independent meaning shall be considered. It can be easily
seen that the equation

duα

dτ
= T αβuβ (2.10)

satisfies (2.5). HereT αβ = −T βα is an antisymmetric tensor. We require that (2.10) involves
only intrinsic variables, which in this case areuα andpα. Therefore,T αβ must be constructed
from uα andpα. The simplest possibleT αβ is

T αβ = k

h̄

(
pαuβ − pβuα) (2.11)

whereh̄ is introduced to make the physical dimensions of the two sides of (2.10) agree.k is a
purely dimensionless factor yet to be determined. When (2.11) is substituted into (2.10), the
equation

pα = 1

c2
(uνp

ν)uα +
h̄

kc2

duα

dτ
(2.12)
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is obtained. The new momentum–velocity relationship (2.12) is considered to be the
constitutive relationship amongpα, uα and duα/dτ for a particle, independent of whatever
dynamical environment the particle is situated in.

This new expression (2.12) has been applied to the problem of the Lorentz–Dirac equation,
yielding well-behaved solutions [1]. Here we shall apply it to the simpler problem of a non-
radiating free particle.

3. Motion of a free particle

We must now test whether this new relationship provides a reasonable extension to the
established relations (1.1) and (1.2). For simplicity, only the force-free situation, wherepα

satisfies (2.9) rather than (2.8) shall be considered here. Remembering thatpα satisfies (2.9),
we obtain from (2.12)

pνp
ν = (mc)2 = 1

c2
(uνp

ν)2 +
h̄

kc2

d

dτ
(uνp

ν)

= 1

c2
(uνp

ν)2 +

(
h̄

kc2

)2(duν
dτ

)(
duν

dτ

)
. (3.1)

Thus
d

dτ
(uνp

ν) = h̄

kc2

(
duν
dτ

)(
duν

dτ

)
6 0 (3.2)

and the general solution to (3.1) is given by

(uνp
ν) = mc2

[
exp

(
kmc2τ/h̄

)
+ η exp

(−kmc2τ/h̄
)][

exp
(
kmc2τ/h̄

)− η exp
(−kmc2τ/h̄

)] (3.3)

whereη is an integration constant. In order to havepα parallel rather than antiparallel touα

asymptotically,(uνpν) is constrained to be positive. Hence, from (3.3),k > 0. In order to
satisfy (3.2) for all time,η must be greater than zero; in order that the expression (3.3) may
not become infinity at some positive finite timeη must be confined to be less than 1. Now,
substituting (3.3) into (2.12), a linear equation with coefficients depending onτ is obtained
from the apparently nonlinear equation. Its solution is

uα = pα

(mc)2
(uνp

ν) + qα
[
exp

(
kmc2τ

h̄

)
− η exp

(−kmc2τ

h̄

)]−1

(3.4)

whereqα are integration constants. Since (3.4) must always satisfy (2.4), the integration
constants must be related by

qνq
ν = −4ηc2 (3.5)

qνp
ν = 0. (3.6)

Whenτ = 0 in (3.4),

uα(0) = pα

m

1 +η

1− η + qα
1

1− η . (3.7)

From (3.5)–(3.7) the integration constants can be determined in terms of the initial conditions
yielding the following results:

η = [uν(0)pν −mc2]

[uν(0)pν +mc2]
(3.8)

qα = (1− η)uα(0)− (1 +η)
pα

m
. (3.9)
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Therefore, equation (2.12) is completely solved. From (3.3) and (3.4), it follows that

lim
τ→∞ u

α(τ) = pα

m
. (3.10)

Thus, a particle left in a force-free space will eventually tend to obey the usual relationship
(1.2). We have already noted this asymptotic tendency in connection with the Lorentz–Dirac
equation [1]. However, in that case, such alignment may be suspected to be helped by the
radiation reaction. Here we see that it is an intrinsic built-in tendency due to the interaction
betweenuα andpα.

Now, there is one interesting thing to be observed. Our ordinary concept about inertial
mass is that it is a characterization of a particle to resist the change imposed by the external
agents. The larger the mass the lesser the change. Here we see a second role. The larger the
mass the easier for the momentum to align the velocity to be parallel to it, as can be seen from
(3.3) and (3.4).

For large masses the approach to the limit (3.10) is so rapid that (2.12) gives practically
the same result as the usual (1.2). Only, when the first and the second terms in (2.12) are
comparable will (2.12) deviate significantly from (1.2). Due to the smallness of the factor
h̄/c2, in order for this situation to occur, eitherkm � 1, |uα| � |duα/dτ |, or a combination
of them must obtain. Assuming thatk ≈ 1 anduα ≈ duα/dτ , then even for an electron,
which has the smallest known mass, the two terms in (2.12) are still not of the same order of
magnitude. Thus, as long as the value ofk is not too small, equations (2.12) and (1.2) can
be considered as the same for practical purposes. Nevertheless, equations (2.12) and (1.2) are
conceptually and structurally different. In (1.2), the concept of momentum is derived from that
of the velocity; in (2.12) the concept of momentum has its own independent meaning. In (1.2),
any change in the momentum must be completely absorbed by the velocity alone; in (2.12),
such changes can be shared by the velocity and the acceleration. This possibility of properly
sharing the changes of the momentum, between the velocity and the acceleration, may have
contributed to make a radiating charged particle avoid running away [1].

4. Generation of spin

According to pre-relativistic classical mechanics, it is difficult to define spin for a point particle.
However, in relativistic kinematics, a point particle will acquire the Thomas precession [2, 3] as
long as its acceleration and velocity are not parallel to each other. Thomas precession is a strict
consequence of the theory of relativity and the peculiar properties of the Lorentz transformation
regardless of any specific dynamics of the problem. Thus, it seems to be reasonable to expect
that a point particle will acquire spin angular momentum parallel to the Thomas precession.
We shall now examine this possibility.

In non-relativistic classical mechanics, orbital angular momentum of a moving particle is
defined with respect to the origin of the laboratory system as

L = r × p. (4.1)

The covariant relativistic generalization is

Lαβ = xαpβ − xβpα. (4.2)
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From (3.4) we obtain by integration and differentiation

xα = rα +
h̄pα

k(mc)2
lnR − qαQ (4.3)

R =
[
exp

(
kmc2τ

h̄

)
− η exp

(−kmc2τ

h̄

)]
(4.4)

Q = h̄

2
√
ηkmc2

ln

[
exp

(
kmc2τ/h̄

)
+
√
η

exp
(
kmc2τ/h̄

)−√η
]

(4.5)

duα

dτ
= −kmc

2

h̄
R−2

[
4ηpα

m
+ qα

[
exp

(
kmc2τ

h̄

)
+ η exp

(−kmc2τ

h̄

)]]
(4.6)

whererα is an integration constant. Thus, the covariant orbital angular momentum for a
particle with the new momentum expression in a force-free space is

Lαβ = rαpβ − rβpα − (qαpβ − qβpα)Q. (4.7)

This is not a constant of the motion, asQ is a function of time. However, in a force-free space
one expects total angular momentum to be a constant of the motion. Therefore, the variation
of the orbital angular momentum must be converted into something we may call spin. If we
denote this spin bySαβ and assuming that at the initial moment it is zero, then the spin at any
time afterwards is given by

Sαβ = −(qαpβ − qβpα)[Q(0)−Q(τ)]. (4.8)

As τ →∞ a net spin is generated. The Thomas precession is proportional touα(duβ/dτ)−
uβ(duα/dτ). From (3.4) and (4.4) we have

(qαpβ − qβpα) = h̄

kc2
R

[
uα

duβ

dτ
− uβ duα

dτ

]
. (4.9)

Therefore, the spin generated is parallel to the Thomas precession as expected.

5. Remark

Although expression (2.12) as compared to expression (1.2) can be regarded as new, the idea
that velocity and momentum are not always parallel to each other is not a new one. Dirac in his
investigation that established the Lorentz–Dirac equation already proposed that for a radiating
electron momentum can be any vector function of velocity and acceleration as long as it satisfies
the relationuα(dpα/dτ) = 0. He decided to stay with the usual expression (1.2) by saying
that other choices are more complicated than this one and would not be expected to apply to
a simple thing like an electron [4]. However, an electron as a radiating and spinning particle
does not seem to be that simple a thing. In fact, based on his relativistic quantum equation for
the electron Dirac hinted that a new kind of dynamics seems to be implied for the electron [5].
More recently, Barut discussed a possible dynamical system for a radiating electron based on
the Lorentz–Dirac equation [6]. He proposed a momentum expression similar to our (2.12)
as a mathematical trick of transformation of variables. His expression is not compatible with
the above-mentioned condition imposed by Dirac. The idea of Barut seems to be that the
spin of the electron comes from the radiation reaction. This idea can be traced to the earlier
proposal of Wessel [7]. In a series of papers Wessel constructed an alternative equation to the
Dirac equation based on the idea that the radiation reaction is the cause that generated the spin.
However, non-radiating particles are known to also carry spin. Thus to base the generation
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of spin on the radiation reaction seems to be questionable. Whatever the cause that generates
the spin, its existence suggests that the momentum and velocity may not be parallel. Theories
based on this observation are well discussed in the book by Corben and the references cited
therein [8]. Some possible experimental verification of the non-collinearity between velocity
and momentum is also discussed [9].

Here we attribute momentum as an intrinsic independent dynamical entity carried by all
particles. It is through the interaction of momentum with the external force that the state of
motion will be modified in such a way as to always warrant the validity of the universal condition
(1.3). Some internal mechanism must then exist for the momentum to communicate its change,
due to the external conditions, to the particle as to how velocity and acceleration should be
modified. Our expression (2.12) is an initial attempt to include such intrinsic interactions in the
simplest way. Although we have not yet found a completely satisfactory way to definitely fix
the constantk that appears in the expression (2.12), simple preliminary applications of (2.12)
seem to indicate that (2.12) deserves to be investigated further.
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